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1 ABSTRACT

This report deals with various effects of the plasma which forms around a

re-entry vehicle on antenna characteristics.

A study of numerical c i •i ade a the IBM 704 shows that double-pre-

dab:on calculations are inaccurat for c A ranges of the p a parameters,

o Th at sugget s a ~e nien pre-fosh ld b I yedt A linear relatiou w s\ Bhoe b to exist

betwe the changes In input admi a - a spherical slot antenna from the free-

space val and the change in r ative in nl of the plasma, for 'smalled

as expressed 
the relation 

functioe 
in 

y e gThis suggests a con enient pre-flight calibration tendique whereby in-flight

Measurementsican be use to deduce plasma properties. 0  I

The harmonic series fos\ation for the input admittanyce is found to be in-

Nt

practical for values of vehicle 'circumference greater than about one wavelength.

An alternative formulation suitable for large vehicle sizes is outlined.

A general formulation is developed for spherically i.homogeneous plasms..I It is shown that only the radial functions are affected by the inhomogefeity, so

1 that results for the uniform plasma case can be extended to the non-uniform case

by the substitution of the appropriate radial functions.
-4W the elesctric and magnetic modes satisfy appreciably different equations when

Ithe refractive index gradient in the _pla~Mais~laxge2.,

Investigations-,of the effect of~'the plasma on ýthe :voltage distribution along

I the ~*, didnotrleeeto. which
th id otlea-to4s6lution of thiý'-problem. How ever,, aro~~r

appears 'promising is outlined.

ihe effe-rt of noise generated by the plasma on the problem of signal reception

I ii



aboard a hypersoniC re-entry vehicle is discussed. I -e~ that the ef-

fective noise temperat "~ of pe plasma depends. on the attenuation of the

plasma. AP I optim frequency for reception usually will be

significantly lower than for transmission. An optimization procedure Is de-

scribed.
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EFFECTS OF RE-ENTRY PLASMA SHEATH ON ANTENNA CHARACTERISTICS

1.o INTRODMCTIC

This report summarizes the work done under the subcontract on the theoretical

investigations into the effects whi ih the plasma sheath generated by a high veloc-

ity vehicle re-entering the earth's atmosphere produces on the characteristics

of antennas carried on the vehicle. The work reported here constitutes an

extension of work carried cut by the Electromagnetic Research Corporation (ERO)

and reported under two previous subcontracts with the Missile and Space Vehicles

Department (MSVD) [1].

In the previous work, attention was confined to uniform plasmas, and prin-

cipally to strongly ionized plasmas. A strongly ionized plasma acts like a good

conductor over a wide range of frequencies. Consequently, an antenna which has

been matched to free space finds itself in a changed environment when the plasma

forms around it. This produces a change in the input impedance of the antenna.

If the antenna is used for transmission, this change in input impedance generally

results in a reduction in the amount of power which is absorbed from the source.

In addition, losses are introduced by the attenuation of waves transmitted

through the plasma.

In a previous report [2] closed form expressions were obtained for the radi-

ation properties of several types of antennas when surrounded by a strongly

ionized plasma sheath. Particular attention was devoted to the analysis of a

slotted sphere type of antenna, since this geometry is the simplest one for anal-

ysis and yet represents a fairly good approximation to the shape of practical

re-entry vehicles. One of the tasks under the present subcontract was to gener-

alize the previous work to covers

* Numbers in brackets refer to Refercuces on p. 80.
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(a) weaker ionization densities

(b) higher radio frequencies

(c) non-symmetric geometries0

It was anticipated that this would require a digital computation program, so

that the objective was to cast the analysis in a form suitable for machine pro-

gramming.

In a previous report under this subcontract [3, earlier work for the slotted

sphere antenna was put in a form suitable for programming on the IaM 704 com-

puter. Programming and calculations were carried out by MSVD for several fre-

quencies and for a wide range of plasma ionization densities. Tabulations of

the numerical results were delivered to ERC during the last month of the contract

period. Examination of these results led to the recognition of several proper-

ties characteristic of the computations. One of these was a particularly simple

type of relation between the change in input admittance of the antenna and the

plasma characteristics for weak ionization densities. Another was that the se-

ries type of formulation used was not suitable for antennas (spheres) large rel-

ative to the wavelength, since the number of terms in the series required in

order to obtain adequate convergence turned out to be too large. The results of

the numerical computational program and its limitations are discussed in detail

in Sec, 2 of this report0

The propertieo oxhibited by the computed results led to additional theo-

reticaJ. investigations which are presented in Sec. 3. An analytical in-

vestigation of weak plasma densities led to a rather remarkable result0  It

was found that for a spherical geometry and a uniform plasma, the change

in input admittance of the antenna when the plasma forms is proportional to

the change in refractive index of the plasma sheath, The constant of pro-

2
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portionality is in the nature of a structure constant dependent on the electrical

dimensions of the vehicle. The type of result is quite general and is not limited

- to small vehicle sizes relative to. the wavelength. Frcn the way in which the

linear proportionality was obtained, it is felt that a similar result would be

obtained with other regular (separable) geometries. In addition, it is suspected

that the same type of proportionality probably exists for practical vehicle geom-

etries. This leads to a convenient and important technique for calibrating an

antenna on the ground so that in-flight measurements can be used to deduce plasma

properties. The details are given in Seco 3.

Sec. 3 also contains the outline of an alternative formulation of the input

impedance problem which should be suitable for large vehicle sizes. Further

work along the lines indicated therein should form the basis for a computational

program which should bridge the gap for high frequencies for which the earlier

series formulation was found to be inadequate.

In the previous analyses it was assumed that the plasma is of constant

thicLkess and uniform density. This is a highly idealized assumption since,

in fact$, the plasma sheath around a re-entry vehicle has large gradients of

ionization density. The extension of the analysis to take into account these

gradients is carried out in Sec 4. It is shown that it is necessary only to

replace the radial functions in the input admittance by functions appropriate

to the actual variation of plasma density. It is pointed out, however, that

1 care must be exercized not to overlook terms which are usually neglected in

treat-mets of propagation in inhomogeneous mediums, since these terms are not

negligible in re-entry plasma problems.

j The analysis of the input admittance of a slot type antenna involves the

voltage distribution along the slot. For a slot which is electrically short,

3



the voltage distribution Js approximately triangular in shape, both in free space

and in the presence of the plasma. For frequencies high enough so that the slot

is no longer electrically short, however, the assumption of a triangular voltage

distribution is probably inadequate, and, in addition, the voltage distribution

may change when the plasma forms. Consequently, a method either for determining

the voltage distribution or for calculating the input admittance without using

assumptions regarding the voltage distribution would be desirable. Sec. 5 of

this report gives the results of some work carried out on this problem. A com-

plete solution has not been obtained, but a method of attack which may prove

successful is presaented

In Sec. 6 the receiving problem aboard a re-entry vehicle is considered. In

particular, the effect of noise generated in the plasma upon the reception problem

is discussed, It is shown that the effective noise temperature of a receiving

system depends not only on the temperature of the plasma, but also on the attenu-

ation through the plasma at the frequency in question,

A brief sumnary of the work encompassed by the report, together with con-

clusions and recommendations for further studies, is given in Seco 7.

1
1

1 '
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2. PROGRAM OF NUMERICAL CONFUTATIONS

2.l Introduction

In a previous report (3], an earlier solution for the input admittance of

a spherical slot antenna was recast in a form suitable for numerical computation.

This form was programmed for the IBM 704 computer by MSVDo Computations were

carried out for a wide range of plasma densities at each of three frequencies:

14, 240, and 3000 mae Tabulations of the results were furnished to ERC for study.

The results of this computation program will be discussed in this section.

In [3] it was shown that it is preferable to calculate the difference in

input admittance of the antenna in the presence of the plasma (denoted by Y)

from that in some reference situation. The reference situation chosen in [3] is

that where the dielectric insulating layer surrounding the antenna (and over

which the plasma forms) is infinitely thick (for which the input admittance is

denoted by Y ). This choice of reference was made because the expressions in

the input admittance simplify considerably. The incremental admittance then

becomes

Y-Y Or2 [Vdi n SP.1 -~~(0)aFn ,, + it],13.Z2 (2.1)

The properties of the plasma enter only into the quantities Fn and v,,, which

depend on the electrical dimensions of the antenna. In these quantities the

properties of the plasma enter through its complex refractive index '2, where
a4. )o I , (2,2)

1in which

af(2-4)

I F being the frequenoy,, and #(e and 2ý the ionization density and collision

15
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I
Jfrequency, respectively, in the plasmao Values of Y" YZ then can be com-

puted for various plasma characteristics by programming the computations for a

set of values of nz. If one of these values is n =1 then for this value the

quantity obtained is Y -Y)s where Yp is the input admittance in free space.

Consequently the change in Input admittance upon formation of the plasma is ob-

tained by subtracting this value from each of the other end values Y- Y :

AYa = (Y-,) - (2o5)

This procedure was adopted since it appeared to reduce the complexity of the

machine program.

In (2.1) the summation over Yt is shown as extending to infinity. In [3),

cmputation only up to A - 30 was recommended, since pilot desk calculator com-

putations indicated that this was sufficient to obtain convergence for the high-

frequency situations of interest in the earlier studies. A procedure was indi-

cated, however, whereby the computation of Fn and 4,, the quantities which

ultimately control the convergence of the series, can be extended to larger values

of M.

In this section, the numerical results obtained on the IBM 704 by MSVD will

be discussed, and four characteristics of these results will be pointed out and

discussed•.

2.2 IBM 704 Calculations

2.2.l Outline of Investigations

In (3], a recommended procedure was given for the calculation of

input admittance in accordance with (2.1). To check the programming,* initial

* The programming was done by Mrs. Ruth Lyon of MSVD.
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computations were made of the spherical Bessel functions occurring in Fn and Gn.

These computations involve the use of recursion formulas to generate the func-

tions of various orders. Both ascending and descending recursions are used, de-

pending on the argument. For intermediate arguments, a check can be made by

using both procedures. It was found that huge discrepancies resulted when or-

dinary single-precision arithmetic was used. Pilot desk computations by ERG

showed that the recursion method was very sensitive t. round-off error. Since

the 704 carries only eight significant figures, the amount of round-off error

incurred in these computations using single-precision arithmetic introduced pro-

hibitively large errors. Accordingly, a double-precision routine was recommended

as being necessary, with the possibility that triple precision might be required.

After the program was revised for double-precision computations, check values

of the spherical functions agreed to four or five significant figures. Conse-

quently, all subsequent computations were double precision. Evidence will be

shown below, however, that for certain regions of plasma properties (ioeopDl)2

the resulting accuracy deteriorates q so that triple precision probably is needed

in these regions0

The frequencies, vehicle size, and other parameters for which calculations

were carried out were specified by Dr. W. 0. King of MSVD. Frequencies of 14,

240s and 3000 mc were specified. Values of x 2 and z were selected in a grid to

cover an extremely wide range, Subsequently a number of intermediate points

were calculated, especially for 14 mc, for which the most complete coverage was

made.

As stated in Seco 2.l, calculations were made of incremental admittance in

accordance with (2.l), where Y represents the admittance when the slotted

sphere is covered with a dielectric layer of infinite thickness. Plots of Y-Yr

7
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did not prove to be especially revealing, since, for example, the imaginary

component reversed sign for certain values of nl. When the incremental ad-

mittance &Yas determined by (2.5) was plotted, however, certain revealing

claracteristics were found. In particular, the following four features became

evident:

(a) A linear proportionality between AY and xz, for constant z and suffi-

ciently small x2;

(b) an interference phenomenon at a value of X2 near 2;

(c) a degradation of accuracy in the imaginary part of AY for large values

of xt and z ;

(d) apparently erroneous values of AY at certain "pathological" combinations

of x, and z .

These properties and their significance will be pointed out in the discussior

of some plots of AY to follow.

2.2.2 Dependence of AY on Plasma Proverties

Fig. 2-1 is a plot of the real part of AY vs. x 2 for several values

of z for a frequency of 14 me. It can be seen that a linear proportionality ex-

ists between x 2 and both the real and imaginary parts of AY for x- below some

upper value. This upper value depends on and increases with the value of z.

Furthermore, a regular dependence on z also is evident.

Fig. 2-2 is the corresponding plot of the imaginary part of AY. For values

of xx below about 1, the same type of linear increase with xA and a regular de-

pendence on z is evident. For large x2, however, the curves become quite irregu-

lar. In contrast, the curves of Fig. 2-1 remain very smooth and regular in this

region. This feature of Fig. 2-2 will be discussed in Sec. 2.2-4,

1
!a
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CORRECTION

Report. No. 61527-3, 30 June 1960

G. E. Purchase Order 214-361527

Corection on page 11: Equation (2.7) should read

0, _(2.7)
I+ Z2

Electromagnetic Research Corporation
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Washington, D.C.
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To show the dependence on z in the linear range more clearly, AY was

plotted against z, for a constant valne of X' = 0.3, as shown in Fig. 2-3. It

was easy to see that a fit to the imaginary part of Ay was given by a relation

of the form

C (2.6)

and the real part by

I+Z

where C is a constant. The solid curves in Fig. 2-3 are plots of ( and X in

accordance with these relations. Since Figs. 2-1 and 2-2 show that C is propor-

tional to x2 for xz not too large, and in view of (2.2), the good agreement of

the plotted points with these curve's was very suggestive of the relation

A•Y= iK"(nz2 - 1), (2A8)

where K" is a constant, For 14 me, Fig. 2-3 gives K'-- 1.4 x 10-2,

Thus we arrive at the relation (2.8) for AY for sufficiently small ?-4I

Since this region of rfl-I is synonymous with i, (2.6) may be written as

AY- 2,-0(.-n z - 1) K C-nz,4)• a ; K,,, (2.9)

where K= 2KA and V= 7iz-1. It will bt_ shown analytically in Seco 3, in fact,

that AY is given by (2.9) for small V for any frequency and vehicle dimensions,

/< being dependent on these parameters.

A noteworthy departure from (2.8) was found for the values of AY cores-

ponding to z = 0 in Fig. 2-1. This is classed as a "pathological" condition,

which will be discussed further in Sec. 2.2.5.

2.2.3 Interference Phenomenon

In Figs. 2-1 and 2-2 a sharp increase in AY takes place near

= 2 for small values of Z. This produces a hump in the curve, which is more

pronounced the smaller the value of Z. This region is plotted in greater detail

11
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-] in Figs. 2-4 and 2-5. The peak of the hump takes place at a value of gg which

is somewhat dependent on the value of z.

This phenomenon is suggestive of interference between the waves refleoted

from the inner and outer boundaries of the plasma sheath° Although for x2 > 1

the plasma represents a barrier or attenuating layer, its electrical thickness

is small enough so that the attenuation (for vanishingly small X, for example)

of a round-trip passage through the sheath is quite low. A notable exception

to the general trend of the other curves is exhibited by the curve for Z = 0.

As mentioned above, this curve appears to fall in the category of "pathological"

values to be discussed below in Sec. 2.2650

The situation is analyzed qualitatively in Sec 3.3 by means of a plane-

wave analysis.

2.2.4 Reduced Accuracy of IaauVnarU Part of AY for Large z and x2

Fig. 2-6 shows an extension of Fig. 2-3 to larger values of x.

The solid lines are the plots of (206) and (2.7), while the computed values are

shown by the encircled points. Clearly the points for &(&Y) depart increas-

ingly from the curve as z increases. It will now be shown that this should be

interpreted as an error in the computed values.

For Z large, (2.2) approaches

?21--Z ,2-1 = 2) A '

I Thus for z >>x', 0 becomes very small, dearanzing as • increases° Now, as men-

tioned earlier, the analysis in Sec. 3 will show that1
SAY =K, + 0(91).

Thus the computed points should approach the curves more_ clsl as z increases.

Since the opposite trend takes place, the computations become suspect.

1
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It should be pointed out, in view of the phenomenon to be discussed in Sec.

12.2.5, that for z >> Xzt the real part of ni-I becomes negligibly small relative

1 to the imaginary part. In order words, 7e, - approaches a pure imaginary quan-

tity, while n: approaches unity.

It has been pointed out already that the curves of & (6 in Fig. 2-2 be-

come irregular for large X2. It is believed that the curves are incorrect in

these regions, and to indicate this they have been dotted. As further evidence

of this inaccuracy, the values to be expected on the basis of (2.6) are shown

by the dashed lines, which have been drawn up to the approximate limit of ,XZ

over which this. relation is expected to hold (xIYs i0.3). As z increases, the

computed values depart more and more widely from these expected values. This

lends support to the conclusion that the dotted regions represent erroneous val-

The reason for this anomalous behavior of the computed values of 40y) is

not known. The apparent discontinuities in certain regions may be due to a

change in formulation in the program which we understand was introduced for

ctoxotain reasons. Why this should affect A(AY) and not kWY we do not know.

The anomalous behavior suggests that double-precision computations on the 704

are not adequate for this problem.

2.2.5 Pathological Values

It may have been noticed already in Fig. 2-1 and 2-2 that several

of the plotted points are "out of line" with respect to the smooth curve through

the remaining points. Each of these points is encircled and joined by a verti-

cal arrow to the curve on which it belongs. Curiously, ý jn 2 of these

S"pathological" points occurs when x2, = I+ z'.

* 17
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Furthermore, it was found that when a computation was made for this combination

of x' and VIP a "pathological" point aways developed.

It was suspected that some error had been made in the programing which re-

sulted in this pathological behavior. However, a thorough check by Mrs. Lyon

of MSVD showed that no such anomaly in the program existed. It will now be shown

that round-off error is the suspected cause of these pathological values.

From (2.2), t ? becomes for these values

which is pure imagnary. As noted in the preceding section, the computed values

of 4(AY) become increasingly in error as -n4 approaches; unity for small 'fl-2-•o

The behavior just discussed indicates that this same type of error occurs for

imaginary values of n%.

Another region of anomalous behavior is the curve for z = 0 in Fig. 2-1.

For small X2, the values should conform to (248), as shown by the results of the

analysis to be given in Sece 3. However, for small xp, the real part of the

computed value of &Y becomes neagative for z = 0, in contradiction to the positive

sign required by (2.8) and the theoretical analysis.

From the above behavior, it is suspected that the recursion calculation of

the spherical Bessel functions becomes especially sensitive to round-off errors

for imaginary and real values of -A7. Consequently it appears that, to achieve

accuracy for all values of argument, a triple-precision routine would be required

on the IBM 704. The anomalous behavior of cA(t4disoussed in See. 2.2.4 also

suggests that triple precision is necessary for this problem.

24.2.6 X yn~f

It was shown in Sec. 2.2.2 that, for smell i-'n 2 -l the values

118
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of AY obeyed the relation

4yAK /.K,

The dependence of the constant K on frequency will now be examined.

From plots of the computed values at the three frequencies, the values of

IKI in Table I were determined.

TABLE I

A, me __LKL
14 7.0o10-3

240 6.5"10- 3

3000 7.2o10-2

The trend exhibited by this table is for A to increase with f . However,

there is practically no change between 14 and 240 mc. In addition, there were

reversals in the sign of X(aY) for small values of z at 240 me, while at

3000 mc the signs were all negative.

As a result of this unexpected behavior of K, an examination was made of

the values of F,, and G,, which had been calculated as a subroutine and printed

out so as to be available for study. It was found that convergence had not net

in at a value of )I = 29 for f = 240 and 3000 mc. It appeared, however, that a

value of A = 29 was just about adequate for f = 14 inc.

Fromw a study of the convergence properties of (2.1) as exhibited by the

calculated values of F. and G5. it is inferred that calculations would have to

bi carried out to about n = 500 for f = 240 mc and to about n = 7000 for f = 3000

me. Consequently the use of (2.1) for these frequencies becomes impractical.

This is the condition where the sphere is large relative to the wavelength, under

which condition the harmonic series analysis becomes impractical. A method of

dealing with this situation is outlined in Sec. 3.3.

19
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I 2.3 Sumr

From a study of the computations made by MSVD, the following four

properties of the results have been recognized:

(a) a linear proportionality between the change in input admit-

tance upon formation of the plasma, for weak plasmas, as expressed in (2.8),

(b) an interference phenomenon for small z due to the waves re-

flected at the inner boundary of the plasma,

(c) impaired computational .accuracy for plavmas characterized by

imaginary or real values of the square of the refractive index,

(d) unsatisfactory convergence properties of the series formula-

tion (2,l) for vehicle sizes large relative to the wavelength.

In Sec. 3, theoretical investigations are made of (a), (b) and (d). The

linear proportionality in (a) is demonstrated quantitatively, while a qualitative

explanation of (b) is given by means of a plane-wave analysis. A procedure

whereby the limitation (d) can be overcome is outlined. It appears that limita-

tion (c) requires the use of a triple-precision program in order to obtain satis-

factory accuracy with the 704 for all values of refractive index of the plasma.

2

1
1
1
I
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3. THEORETICAL EXTENSIONS FOR A UNIFORM PLASMA

In this Section several extensions to the analytical results obtained in

previous reports which were obtained under the present contract will be reported.

These extensions include

(a) the analysis of weak plasmas, including a discussion of non-spher,-

ical and non-symmetrical geometries;

(b) a discussion of the interference phenomenon pointed out in Sec.

2.2.3;

(e) a formulation applicable for the condition where the sphere is

large relative to the wavelength.

31 Weak Plasmas

In Sec. 2.2.2 it was shown that the computations indicated that, for

small y-a -a , AY obeyed the relation

-AY= (3o1)

where K depends on the frequency, but not on the plasma properties. In this

Section, the relation (3o1) will be derived analytically for the case of a spher-

ical geometry. Its applicability to other geometries then will be discussed.

The method of establishing this result will be to show that for each value

of the summation index n in (2.1) the corresponding term in AY, which will be

designated by AY , contai-ms V as a factor.

As shown in [3], F. and C7 are given, respectively, by

| '=" = J,•(,•,oa) [h.0 U•,• -.a) .,,)]O

,• , (3o3)i ¢• = i~~h~~(, 4) Rh••,)- Ei /)

in -which is the reflection coefficient of the nth magnetic mode at the

I boundary r = b, and &P is the corresponding reflection coefficient of the

21



electric mode. Expressions for &A and RP were given in L3J, and will be

rewritten below In a revised notation.

Pm and r., appear in the expression for Y- Y given in (2.1). The cor-

responding quantities which appear in Y.-Y may be denoted by c.H1 and 6 .s

and the corresponding reflection coefficients by R.• and g,,e± It will be

shown that

RIMI-m"i" - + 0 (V..), (3.4)

and, similarly, that
K,• -,F' -'• +0 (3o•

where • and -IAF do not involve the plasma properties. These lead to the cor-

responding relations

F~-F~ =2'~~~(3.6)

" A (3.7)

so that

AYn = . -K,, + o(-,,). (3.8)

Consequently

AY= Zy = iK+ON191 (3°9)

which is the result to be demonstrated.

In order to make the analysis least cumbersome, it was found advantageous

to introduce a simplified notation. The functions involved are the spherical

Bessel, Neumann and Hankel functions, and the arguments of these functions that

will be encountered are Ab, As, kqb , kzc , and ksc . These arguments will

be denoted by the subscripts 1, 2, 3, 4, 5 respectively. Since R',Nl and RýL• can

be written entirely in terms of the spherical Bessel (j,), Neumann (7,2) and

Hankel (h4) functions, the subscript n will be dropped. Consequently, for ex-

ample, j (/4k) is denoted by j, etc. Thus the, following scheme is useds

2
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1 fn (*36) 212 hj,,'(ksA1)As

-. 4n-..-, (k, " S h•

'"it)C -(g lkA,) n4. h:Vlr 14

The det-ails will be carried through for n and then the corresponding re-

sult written down for Rh! by inspection.

From [3] we find that R,"L may be written in the deteLminantal form

where

•1b,1 ~ Ic• •I 1

Pit~ APS4Ali

-- The corresponding expression for the free-space condition is

where

.3 g

E'1

SThe essential step is to develop the functiona with arguments A.s and AkC

(subscripts 2 and 4, respectively) in a Taylor0 s series expansion in terms of the

jcorresponding functions of arguments kb and A9C (subscripts 3 and 5, respec-

tively). Since

1 23
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I k•l~, "'A84-/,÷(..-Ik• k3 0 (+,O,

we write, for example

isA -" .A (4,k) u./,, (kh(I+,,.j�;,(*,A) + Vkvb", A)+ 00a) + . j, s , + 0b, 9 ,
-.- ,, (k,} _.. r• .a . ,o•.b=)v,..,o,

"JS - + ow') a ,. •4A + ocW'),

where

With transformations. of this type, we obtain

A. -Cf* v4A, ONb -) 4

D = d'+ V'CA + 0+')

E '+ y4bE,3 +.O'

F F " + Vjbs6 + OCA,

Then the difference between RPi and ?£ becomes simply

II
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1 A similar analysis may be performed for the electric modes. The result may

be written down at once by inspection, since only the values of 14b 4, and

1 ( are changed:

Finally, there remains the incorporation of these results into the corre-

sponding differences F. - AnFand &,- 6,F, which are the quantities which appear in

the incremental admittance

&Y = Y- YF h. ;Ayfl.

For these we have, on denoting functions of argument k~a by the subscript 6,

ho (h, - Rx'nj) h-

+ O+,) -

('Y.+ +,oLVF)s

T Similarly,

Gn- 6 C+0(
, ^•r + O-Cv),

Since V is a factor in Fn- Fv'andC,,-g for each value of n, it is a factor

in AY, so that we have, in general, for any electrical dimensions of the spher-

ical antenna

AY= £i () + O6'),

which is (3.9), which we set out to derive. Therefore, for sufficiently small

V, AY is proportional to V.

1 3.1.1 Non-Spherical Geometries

The result expressed in (3.9) was obtained by a Taylor'a series

I
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expansion which is valid for sufficiently weak plasmas. Consequently, since

the harmonic series representation of the input admittance is absolutely conver-

gent for any antenna size, even though it is useful for computation only for

antennas which are not large relative to the wavel-'ngth, it can be used to demon-

strate the validity of (3,9) for spherical antennas of any size.

For other antenna shapes for which the antenna contour is a coordinate sur-

face in a separable coordinate system (ie., one in which the wave equation is

separable), a similar type of representation of the input admittance in a harmonic

series can be carried out. It seems rather certain that in such cases a result

similar to (309) would be obtained by the same kind of procedure as that followed

above.

Re-entry vehicles generally have rotational symmetry, but seldom is the shape

'oseparable" One is led to conjecture whether a result similar to (3.9) would

apply in such cases. 'This would seem to be worth investigating further by means

of a generalized analysis, We may express the feeling that a proportionality to

SVfor small V/ still will be obtained.

The importance of a result of tthe type (3°9) for upper atmosphere probing

is worth pointing out in some detail. One of the objects of analyzing the effects

of a plasma sheath on antenna impedance is to be able to use in-flight impedance

measurements to deduce the properties of the plasma. This has led to attempts to

simulate the plasma so that pre-flight calibrations can be made of the dependence

of the plasma on antenna impedance. Since a plasma reduces the dielectric constant

(or real part of the refractive index) below unity, simulation of this character-

istic is not a simple matter.,

For weak plasmas, on the other hand, (339) shows that simulation in the strict

seuse is not necessary. The validity of (3.9), in fact, is not limited in any way

I
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to plasma sheaths, for which V has a negative real part, but is valid for any

sheath for which 9, be it positive or negative real, or complex, is small.

Hence one may use a positive real V to obtain a calibration measurement. Now it

is a simple matter to cover an antenna with a sheath of, say, polyfoamp and thus

achieve a small known value of V. By measuring the resulting change /AY, a deter-

mination of K, or calibration, of the antenna system is achieved.

3.2 Interference Phenomenon

In Sec. 2.2.3 it was pointed out that the curves of AY Va. xa in Fig.

2-4 were suggestive of an interference phenomenon between waves reflected from

the inner and outer boundaries of the plasma sheath. A qualitative analysis of

this phenomenon will be developed here.

The geometry is illustrated in Fig. 3-1, where the region between a and b is

_ occupied by the insulating layer of propagation constant ki, and the region be-

i b c:

Fig. 3-1 Geometry for Analysis of Interference Phenomenon

j tween b and c is the plasma of propagation constant *r, while to the right of c

is free space, represented by propagation constant ks.

1 Assuming z = 0, we have from (2.2)

i a Maki. - - -- i .- ,)"'. (3.10)
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Consequently the reflection coefficient at the boundary a of waves impinging

from the left is

where

At = 2•, 9 = 45"t ;o that 20 900, Consequently the reflected wave then is

1 shifted 900 in phase relative to the incident wave.

For 0. >1, kg is pure imaginary. as shown by (3 10) o Consequently the in-

cident wave in advancing to the right from b, as well as the reflected wave in

retreating to the left from c, undergoes attenuation without phase shift. The

attenuation in a one-way passage between b and a is

At f = 14 me, c-h = Oý,25 m, and X1 = 2 this amounts only to 0.64 dbo Consequently

the insulating layer effectively is terminated by a pure reactance for x, = 2,

and this affects the input admittance markedly.

It is quite evident from (3.11) and (3.12) that the critical value of xj

1for a planar configuration, is 2, since the value of X controls the phase of

the reflected wave.• For a non-zero value of Z, the phase of the reflection coef-

ficient is affected (as can be seen from (3M2)), and also there is an additional

Sphase shift end an additional attenuation in the wave travel between b and c.

For a spherical geometryp there is a small departure from the relations dis-

I cussed above. The curves of Figs. 2-4 and 2-5 clearly show the development of

j the phenomenon as a function of W and Z.

303 Larg-e Spheres

The ha•monic series representation of the input admittance as expressed

in (2.l) has been shown in Sec. 2ý2.6 to be impractical for computational purposes
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for spheres whose circumference is a large number of wavelengths. In this Sec-

tion a procedure will be outlined by means of which it appears possible to de-

rive an alternative expression for the input admittance which is useful for large

spheres. The procedure involves the following steps t

TI (a) Transformation of (2.1) into an integral by means of the

- Watson transformation;

(b) splitting up this integral into two components, one of which

corresponds to the geometric optics field, the other to the diffraction field;

(c) evaluation of these integrals by appropriate methods.

The essence of the Watson transformation consists in recognising that (2.1)

is the s•um of the residues of a complex integral taken over a suitable path en-

closing the poles of the integrand along the positive real axis. This integral

is easily seen to be

: •-'•',OLV(QJ 4,,) ()"V) oPff• i(3o13)

where

I - n +

The contour C is shown in Fig. 3-2.

The quantities #V and * involve spherical functions of order n, or the

I ordinary cylinder functions of order nVz= V.

In order to put (3,13) in a form more suitable for evaluation, we split the

I integral into two parts by writing

2
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I ~~COS9&'g ttr•J~

SThen (3.13) splits into two parts, Yj and t

Y '7 -Zf*) d',(314

in 
which

rM ccose) de.

I
Fig. 3-2 Contour for Watson transformation

1The integral in Y has no poles within contour C. Consequently, asymptotlc

values may be inserted for the cylinder functions in * and * . Because of

the branch point at U = V (u denoting the argument) in the cylinder functions en-

1 tering $; and j#, the appropriate asymptotic forms for these will have to be

selected.

j In developing the asymptotic values, the usual asymptotic expressiosa for

the associated Legendre functions generally are used. In (4] we have shown

that these functions may be replaced by a Bessel function series which in rapidly

I
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convergent for large spheres. This representation appears to offer greater

accuracy than the asymptotic expansions of the Legendre functions for spheres

of Intermediate size.

In the most general case, Y may be expected to be decomposable into several

components, corresponding to "lens" and "rainbow" terms due to corresponding

action of the plasma sheath. In almost all practical cases arising in the re-

entry problem, however, these terms would not be expected to be of any great Im-

portance because of attenuation in the sheath.

The term Y2 can be evaluated by residues, by deforming the contour C into

loops around the poles of the integrand, which are the zeros of Z,"y (Ap•) and

Vz-'j, (Ic4). These residues correspond to the field which has diffracted around

the sphere one or more times. Consequently, it is to be expected that Y& will be

small compared to Y1.

We have given only an outline of what appears to be a workable procedure for

the large sphere case, since the results of the computation program became avail-

able only toward the end of the contract period. The procedure outlined follows

in a general way the procedure [5] which has been found to yield satisfactory re-

j sults for the computation of fields in the optical and shadow regions.

3
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4° NON-UNIFORM PLASMAS

4.1 Introduction

In all the preceding work, the plasma has been idealised by assuming

both its refractive index and thiekness to be constant. Both of these assumptions

are far from the true situation in re-entry plasmas. Consequently it is desirable

to extend the treatment to a more realistic approximation. In this connection,

knowledge of the plasma shape and properties probably is still only in a crude

state. Nevertheless, a more realistic approximation than that of a homogeneous

plasma should not be difficult to obtain.

In this Section, the previous treatment will be refined to take into account

an inhomogeneous plasma, but with the restriction that the stratification be

spherically symmetrical, so that the thickness of the plasma is constant. In this

case it turns out that the previous results are modified by the replacement of the

radial functions (spherical Bessel functions) by functions appropriate to the vari-

ation of refractive index with the radial distance. Beyond this, an important

difference enters, in that the radial functions for the electric modes are not

the same as the radial functions for the magnetic modes, since they satisfy dif-

ferent differential equations.

A rather general treatment of the problem of propagation in a non-homogeneous

spherically-stratified medium was given by B. Friedman [6]. Friedman's analysis

was aimed at propagation through the earth's atmosphere. Consequently, he was

able to neglect certain terms arising from the gradient of refractive index which

are small in that problem. In the re-entry plasma problem, however, these terms

no longer are negligible. In addition, Friedman treated the case of point electric

or magnetic dipole sources at a finite distance above the surface. Here we shall
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be interested in the distributed surface source representing an excited slot.

In view of these differences, it seems desirable to formulate the analysis

rather fully, in order to bring out the differences between the homogeneous and

the inhomogeneous plasma. This will be carried to the point where the results par-

allel those for the homogeneous plasma, so that similar procedures then can be fol-

lowed.

4.2 Formulation

The underlying geometry will be the same as in the hcogaeous cases

a slotted perfectly-conducting sphere is energized by a voltage source at its

center° The sphere is covered with a uniform insulating layer of thickness b-a

and propagation constant k,. Overlying this is a spherically stratified plasma of

varying refractive index n2.= nz~(R), of thickness c-b. The plasma terminates in

free space, either abruptly if o is finite, or gradually if o-•.

As in the homogeneous case, the fields may be separated into electric and

magnetic modes. The electric modes may be derived from an electric Hertz vector

potential .e in virtue of the Maxwell equation

div i = 0.

This Hertz vector, however, does not satisfy the wave equation. Buat by writing

Q5 *- A k12P (4-1)

then it may be shown that PR satisfies the modified wave equation

v1 PP+, Pe O, (4.2)

where

Ug -k.a dlilkI/-)) a~j (43)

The quantity fIg may be considered as an effective refractive index for the ;lectric

modes.

1
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The electric and magnetic field stre.',hs of the electric modes are derivable

from the equations

vi ~k =R,' (4-4)

H19~ 
4  curt T" =--J. r P) (4-5)

At should be noted that in these equations kt appears rather than •.

The magnetic modes are due to source distributions which are characterized by

div 1 = 0. Circular current distributions have this property. The fields of mag-

netic modes are derivable from a radial Hertz vector potential L1, which, like

T7p does not satisfy the wave equation0 But by writing

it turns out that PH satisfies the ordinary wave equation

Vop' + 1IP6 O. (4.7)

The electric and magnetic field strengths of the magnetic modes are derivable

from the equations

t4 grad- (-9
The advantage of writing the Hertz vectors , f in terms of the scalar

functions P", P4, respectively, is that the latter quantities are solutions of

scalar wave equations whose separation properties are well known. Thus, (4.2)

may be separated in spherical coordinates by writing

ReP = r(e)Lu/(ff) V(p), (4.lOa)
S~where

dV 4-maV- 0, (4.lOb)

34e
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dR (. (4ý10d)

The boundary conditions demand the continuity of the B- and f-components of

E and H at the boundaries of the plasma. These lead to the requirement that

be continuous across the boundaries.

Similarly, for the magnetic modes one obtains separable solutions of (4.7) by

writing

RPH = 7(4.11a)

where 'I and V are solutions of (4.lOc)p and (4.1Ob), respectively, as before, but

L/M(R) is a solution of

¶ Thus it is clear that the magnetic radial functions 4/1 satisfy a somewhat dif-

ferent differential equation than the electric radial functions UE. The differ-

ence resides in the appearance of the modified radial propagation constant kz

in (4.lOd), while in (4.U1b) 4kappears unmodified.

For the magnetic modes, the boundary conditions require the continuity of

U" and d(JN

across the boundaries of the plasma.

If one chooses the separation constant 52 to be

then a finite solution of (4010c) is

Consequently, a harmonic series representation for the fields, and ultimately of

the input admittance Y, is obtained similar to that in (2.1). The essential dif-
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ference lies in the radial functions for medium Q. Instead of the spherical

Hankel functions which appear (2.1), the corresponding solutions of (4.10d) appear.

For the magnetic modes, the same type of harmonic series representation is

permissible, the only difference being that the radial functions are the appropriate

solutions of (4.o1b)o

Thus the fields are derivable from the radial Hertz potentials

77 02t ,*A, UhE(R) n(OsO) cosrml?, (,4.12a)

The field components are obtained from (4.4) and (4.5) for the electric modes and

from (4.8) and (4°9) for the magnetic modes. The tangential components are

(A-A,), s (4.13)

s# I G • sin.M' J,
__ (4-13)H~I~

In the above, (Am.In)" denotes •a(A.U,')and 7"'denotes 4(k.)-W50))

Equations (4o13) are valid for the inhomogeneous (but spherically-stratified)

plasma, medium (, as well as the homogeneous insulating layer, medium (D , and

the outor free space region (2). Only the radial functions U,, , U," will differ

for each region. The forms of the functions in each region are determined by

the differential equations which they satisfy and the boundary conditions.

In order to determine the fields by means of the boundary conditions, we

assume the following forms for Un and UM ;

hu "(k,'R) - R ,)-j,1 (k,R), LI,= R(kR) - R•-j (k," (4o14a)

I
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7 ~~a(~7,-, (u%~~) (2)" (4-14b)I

UnosI v.F-h,2VqR)., 03r"h (3-(4-14c)

i• and trn4) are, respectively, outgoing and incoming wave. solutions of

(4-10d) for medium 4D, while w• and wx"' are the corresponding solutions of

(4-11b)- R," and are reflection coefficients at the boundaries of the

sheath, and T7,r- and znaM are the corresponding transmission coefficients.

4.3 Determination of Amplitude Coefficients

EThe amplitude coefficients a;,n and aH are determined from the pre-

scribed boundary values of Eq and EF on the conducting sphere R = a:

(4-15)

where HO(x is the Heaviside step function. From the reciprocity theorem and the

orthogonality properties of the trigonometric and associated Legendre functions

[7], these coefficients are found to be

_ _aim- 2n(fltl) UFO)in'4d

--- 5/4E)'t•a(•) (4o16a)'

where

and 3
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and

0,

Except for the functions WI'&) and t/6"(), (4.16a) and (4.16b) are the same

as in the case of the homogeneous plasma.

By introducing the values of (4.15a) and (4.15b) into (4o13), expressions

for the field components in terms of the exciting voltage applied to the slot are

obtained, These then can be used to solve for the fields and the radiation and

impedance properties of the antenna.

4.4 Determination of Reflection and Transmission Coefficients

Application of the boundary conditions, i.e. the continuity of

(UE, E '"k.) and U"'

at the boundaries of the sheath, leads to the following values for the reflection

coefficientst

en P (4.17a)

I= , 61 (4.i17)

IC, P:,i
where

Ik 110 P.IIk, A52
I34'*4J 14~OJ Wt VillJ

In terms of these reflection coefficients, the transmission coefficients are

I
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Similarly, for the magnetic modesA , ý9 l•9a).

L. 'PIca PA (4.19b)

Al-a- *, (&-.4Vj,')_ (4.20a)

where

h Is

4.5 In•pt Admittance

The input admittance may be formulated in the same way as in [2] for

the case of a homogeneous plasima. The admittance is obtained from the relation

The result is

SYC

where

(4.22a)
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(4.21) is entirely analogous to (2.1), the only difference being in the re-

placement of the radial functions w " (defined by

P= ft('1!ýA),(4.23a)

Z4 (4.23b)

as in Seco 3-3) by the functions 5 and ;9, respectively.

4.6 Radiation Field

The radiation field is obtained by replacing the radial functions, £/,

and /3 by their asymptotic values. Since these radial functions are the same

as in the homogeneous case, except for the values of the transmission coefficients,

the form of the radiation pattern is essentially the same in both cases. Some

"important differences can arise, however9 from the variation of the transmission

coefficients with direction. In some cases, cut-off can set in at certain angles

due to substantially total internal reflection at the plasma sheath. This phenom-

enon can be affected appreciably by the nature of the refractive index gradient.

This phenomenon also can take place to a different degree for the electric and

magnetic modes, due to the fact that the corresponding radial functions for these

modes satisfy different differential equations. The difference lies in the appear-

ance of the effective refractive index ff in the radial equation for the electric

modes, while the equation for the magnetic modes contains the refractive index ?IV

This difference will be discussed in greater detail below.

4.7 Effective Refractive Index for Electric and Mawnetic Modes

To illustrate the significance of the difference between W2 and ?z2,
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consider the case of a plasma which has a refractive index which is zero at its

inner radius R = b, which grows to a maximum at a radius Rm and then decays (say

exponentially) to zero. This can be represented, say, by

A• A(,-h) s•-)

The maximum value of ng occurs where

Hence 
,m-b

?? = A 9-,b) e- /C -)

or, on putting
R-b= i,

2n = A r erl+.2 4 )

This variation is illustrated in Fig. 4-1 by the solid curve'

To find f, we have

2" d• t  = "v•7~ m"F J= ( -•

Hence

a sp dra

Since the bracketed quantity is always positive, W2 is always less than 7z o This

is shown by the dotted curve in Fig° 4-1. Whereas fli is everywhere finite, 71"'

is - at P = 0. Thus -/= in (4,10d) has a singularity at #e = 0, whereas

4s = ,?IAf in (4.11b) is regular at r= 0.

As in the above example, the magnitude of the difference between 91 and wa

depends on the "curvature" of the reciprocal refractive index measured in terms

of the free-space wavelength. Thus at sufficiently high frequencies (small *)

this difference becomes small except very near r = 0 (the inner boundary of the

plasma), where the model given by (4°24) has discontinuous derivatives.

41
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Of course, the above example is an extreme one which is not likely to be

encountered in practice. A more plausible assumption would be a case where nZ -

was zero at R = b and R= - Nevertheless, in any model in which ?t, becomes zero

at any point, •ii becomes infinite there. This is evident from

it, 001nn-

This is certainly infinite unless n2,/n4 = Z

As a result of the difference in the differential equations satisfied by Pe

and P it is to be expected that there will be a significant difference in the

behavior of the electric and magnetic modes which compose the total field when W

differs greatly from ?

4.8 Discusion

In the foregoing portions of this section, the general relations for the

fields and input impedance have been developed for an arbitrary spherically-strati-

fied plasma surrounding the spherical slot antenna. It has been shown that a har-

monic series representation of the fields similar to that obtained in the case of

a homogeneous plasma can be developed In this case. The difference between these

developments for the inhomogeneous cases lies in the form of the radial functions.

This results in corresponding differences in the reflection and transmission coef-

ficients. Consequently such characteristics as the input admittance, radiation

efficiency$ optimization procedures, and radiation pattern (especially at large

angles to the direction of principal radiation) may be expected to be affected by

the inhomogeneity of the plasma. The extent of these effects will depend on the

nature and magnitude of the inhomogeneity. It was hoped that data on plasma in-,

homogeneity would be available for study of these effects in connection with the

present work, but, unfortunately, this information was not available to us0I
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Some general remarks can be made regarding the effects of an inhomogeneous

plasma. In Sec. 3.1 it was shown that a weak homogeneous plasma produced a

change in input admittance that is directly proportional to V = (ri- I)o The

proof was based on a Taylor series expansion of the radial functions which in-

volve the plasma characteristics. In the case of a weak inhomogeneous plasma, a

similar result will be obtained in those cases where the corresponding radial

functions (both for the electric and magnetic modes) can be expanded in a rapidly

converging Taylor's series. Thus one can conclude that the result

AY = i 06")
obtained in Sec. 3.1 also holds for sufficiently weak inhomogeneous plasmas. The

constant K, of course, will depend on the nature of the inhomogeneity, in general.

In L2] it was shown that the external efficiency of the antenna in the presence

of a homogeneous plasma is the product of three factors: the ratio of power expended

in the radiating modes to that delivered to all the modes, the power transmission

coefficient for the radiating modes, and the transmission factor at the outer

surface of the sheath (representing reflection loss at the outer boundary). In

the case of an inhomogeneous plasma, the first of these factors should remain the

same, while the other two could be appreciably different. An appreciable difference

would be expected in cases where the overall depth of the plasma was much greater

in the inhomogeneous case. For a given integrated conductivity (i.e. fkadt,

t = thickness), the attenuation would be about the same in both cases, but the

transmission factor in the inhomogeneous case would be increased appreciably from

that in the homogeneous case (if the latter were small) if the plasma extended out

to about a body radius.

I
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1 5. VOLTAGE DISTRIBUTION ALONG THE SLOT

501 Introduction

I In all of the analysis of the center-fed slot antenna, it has been

1 assumed that the voltage distribution along the slot is known. For the case of

a slot which is sufficiently short compared with the wavelength, the voltage dis-

tribution cannot depart appreciably from a triangular shape, either in the pres-

ence or absence of the plasma. In the numerical computation program discussed

in Seco 3, a triangular distribution was assumed.

The assumption of a triangular distribution should be a good one for suf-

ficiently low frequencies. At higher frequencies, howwer, it is to be expected

that the voltage distribution will depart considerably from a triangular shape.

F•tthermore, the distribution may change when the plasma sheath forms. Conse-

quently, a method for determining the voltage distribution or for calculating the

input admittance without requiring the assumption of a Imown voltage distribution

would be desirable. In this Section, the efforts toward this end will be described&

These efforts were not entirely successful, but a procedure which appears to hold

promise is outlined.

5.2 Formulation of the Problem

j The exterior admittance of a center fed spherical slot antenna was de-

7eloped in [2], with the result

I~ I [ A2}z.1 (,, f"l'•["Y'()z] (5ol)

Interchanging the order of the summations, this may be written in the form

45I



I

Y v -' (5.2)

where

Y- (503)

In [3, a procedure was given for calculating the quantites o

and Z(kVZ~Lka) for values of n~ up to about 30. Cqnsequently we may as-
sume that approximate values of Y.2 are available, at least for the smaller val-

ues of n•

From the expression for the azimuthal component of the magnetic field, it

is readily seen that this may be written in the form

where is Independent of V. Then it follows without difficulty from (4.21)

that

LV(O)3=

Introducing the value of from (4,15), it follows on performing the

f-integration that

In the foregoing, Vip is the M "coefficient in the Fourier expansion of the

slot voltage

Up to now only the exterior admittance of the slot has been considered.
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Presumably if a sufficiently simple configuration is assumed in the interior of

the sphere, it would be easy to obtain the interior field and interior admittance

of the slot in much the same manner as was used for the exterior. In this case,

the total admittance of the slot would be

Y(0 YM ' (5.7)

where

+ Vr ft a. (5-8)Y" c.. V. j; f

1--i
Now the m/14 Fourier coefficient of the surface current density K(gp) at the

boundary* between the exterior field and interior field is given by the discon-

tinuity in the Mtn4 mode of the magnetic field strength

Substituting the above into (5.8)

~~K CO s'-l]K, 0e 5 dOl, (5-9)

or

where

K"++ = A4X 9 O
Since the slot is assU to be narrow (5(<a), the above integral is ap-

proximately equal to the mtII Fourier coefficient, Km (4010 " =VA of .the current

density at the equator.

* The boundary is considered to extend entirely around the equator of the
sphere even though the slot extends only part of the way around it. The positive
direction of surface current flow (and also of slot voltage) is taken to be the
minus 69 direction.

1
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tti(5.10) relates the voltage across the slot

e)- V,,, Cos MIP,

to the surface current density at the equator of the sphere

K(q) WZ K,, o '. , (5.12)

through the known quantities Y%, Consequently (5.10), (5.12), and (5.6) should

be sufficient to determine the input admittance completely without making any

assumptions regarding the voltage distribution, since it should be possible to

determine the latter through these equations.

5.3 Derivation of an !ntei-ral Equation for the Current Density

An integral equation for K(qf) will be obtained in this section through

use of (5-10), (5.12) and (5.6). If the mt/u mode radiation impedance, Zm, is

defined to be the reciprocal of the mI mode radiation admittance, (5o10) can be

written as

v. -(5.13)

Since Km is the m0/ coefficient in the Fourier expansion (5,12) of K('q) , one

has

Substituting (5.14) into (5.13) and multiplying both sides by cosmf, there

follows

V,,CosVq? = Z' a C45 K 6"'') C0 hVC4, (5.15)

By summing (5o15) from M= 0 to -, and interchanging the order of summation

{ and integration, (5.15) becomes

"if
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This equation holds for all values of 4p in the range -•_ f s iro The in-

tegral on the right hand side of the equation may be split into two parts, one

representing integration from - 9, to + 3 along the slot, while the rest repre-1+

sents integration along the conducting surface of the sphere. Over the face of

the slot the current density must be zero everywhere except at the center where

it is fed. Here we set

K6p') = . -, c"
where S£q') is the Dirac delta function and 4 is the impressed current. Then

fM[, Zt cosm~pC03mq']KO(') adp'=r.4 co, m

(5.16) then can be written as

T~) o IZ"COSh"F cqvta cos#V`K(f'14d.'; (5.17)

where use has been made of the fact that the integrand in (5.16) must be an even

function of op', from symmetry.

If the summation in (5.17) is written as

GCq4" Z' Cos M97 Cc0s #If' (51A8)

then (5.17) becomes

vc¢ C7 = 0)eq, + 2 a f 6• Kcqg,) , (5019)

When q lies in the range (A,< Iq,( < ir, V(9) is zero since the conducting

strip in back of the slot (see Fig- 5-1) is assumed to be a perfect conductor*

Consequently (5.19) becomes

4.
0 ZMGO f,, (5.20)

if iv < 1I < r, while if =0

"=, O +o • Or zKW)d (5.21)- (01o) + f a¢. (0o9P
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Equations (5,20) and (5,21) together with (5,18) complete the mathematical

formulation of the problemn (5.20) is a Fredholm integral equation of the first

kind with a synaetric kernel;, C4 Cpq) 'The unknown is the quantity Za K/(()/l.,

which is Za times the current density per unit impyessed input cmurento If

(5-20) can be solved, the input impedance, Zi;z , will be given by (5.21). The

kernel, [(qj') , [as can be seen by substituting -L E '-V")-L (' T")for

K(q')in (5.16)] is numerically equal to half of the voltage at q) due to two unit

source currents, sy~metrica:L. placed at +,p" and -q/` It is necessary to use

symmetrically placed sources 1z (5o16) since K(Tp) was taken to be an even func-

tion of T when it was expanded in a cosine series,, If this assumption had not

been made an integral equation would have been obtained with a kernel

1hi c tr ( -p . This kernel is a Green's function, and 6 (<O q2) is the even

part of this Green ts function.

S-4 Solution of the Integral Eauation for Some Special Oases

One standard method for the numerioal solution of integral equations

is to approximate the integral by means of a summation, and then to solve the

resulting set of linear algebraic equations. Physically this corresponds, in the

case treated here, to replacing the conducting strip shown in Fig- 5-1 by a number

of connecting wires as shown in Fig0 5-2. The conducting surface has been re-
placed by ZI shorting wires located at f ps,, 4 =±, 0 q? =e-p IV

The current density in the region f, i T 7r can now be written as

where Xj is the current in the wire at =o

5,,4.l Formal Solution

Substituting (5.22) into (5,20) and (5.21), and using the notation
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G(, t) a i (5.23)

with cpO one obtains for = 1, 2, . o N

0 aO += V r (5.24)

4- (5.25)

or in matrix form

&&I i i m 2sn ZZ/. 01
S1 . __ (5-26)

6.v .. "L2 S j -

Solving for L;,, by multiplying by the inverse of the matrix of the equations

S7.1] there results

• No 4 W. =(5.27)

where

Z'. Co Csm#, Cos ,,.. (5-28)

Equations (5.27) and (5.28) provide a formal solution for the input impedance

for the physical situation depicted in Fig. 5-2. This solution is correct, how-

ever, only if the matrix (C64 ] in (5.26) has an inverse, i.e. if the numerator

of (5b27) does not vanish.

Let us consider the case where the element Qa defined in (5.28) is approxi-

mated using M+ 1 modes:

l53



1
I

Then the matrix [ can be written as a matrix product

.[ a 84 w ~~e~ft% Zsoo0. -0"o1

[J6 6 &Gj Cs41,' ... sq C om o 0& 04%C~,
:: : : A::d: 1 , (oo

as can be verified by taking the indicated product. Now the first matrix is of

order N+ 1 by M+ 1L If N is greater than/I, then the determinant of the product

vanishes. [See W. L. Ferrar, "Algebra" Oxford University Press, 1957, Theorem 15].

5.4.2 lmpefanoe of a Slot Weuding CGopletelv Around the Shere

One special case to which the formal solution (5.27) may readily

be applied is that of a slot extending all of the way around the circumference

of the sphere. The conducting strip in back of the slot is reduced to a narrow

strip located at q7, = -r, as shown in Fig. 5-3. In this case the strip evidently

is equivalent to a single wire at q = fr, or to a single pair of symnetrically

placed wires at q- t K. Taking f 4a', (5.27) becomes

Z;X IC910 ol I zz .(-fr "

Z zZ 71~,Z,Z.D- (-W"*"3 (5°31)

4 ZIZ+ Z, Z.Z.+ Z4+Z, 5 *' Z 44 "' + ZaZs -..

5.4.3 Impedance for Two Pairs of Wires

Saue additional light is shad on the general problem of the slot

backed by a conducting strip if the input impedance of a slot backed by two pairs

of symmetrically placed shorting wires, one pair located at 4p m iand the seocInd

pair at 4i=p , is compared with the case already calculated above in Seao 5.2,
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where the slot was backed by a single pair at q9 a w only. These two solutions

for the input impedance should approach each other as 4 approaches Ir. That

this is true only if same resistance is included in the shorting wires will now

be shown.

If each shorting wire is replaced by a resistance R, then V(Kj) is equal

to -Ri, and equations (5.24 and (5.25) become
Z' N

"J.0 AJ

C zz.(5.32)
2 ~G he+

The solution is

4 0Goo' 0401+7

*•, ., . o. . . . .

in• (5-33)

00+,1 1) C-4%Q

G. S4 * it

In the case of shorting wires at f = i and N a 4-,-, this becomes

ZMo (G14+1 ,

Expanding as a polynovial in R/z

Z, Ga Gal = .j iJ (5.35)
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As •-vf, the first terms in the numerator and denominator approach zero, since

each determinant oontains equal rows. If R is mall, but not zero, the last

term may be negleoted. R cancels out of the ratio of the middle two terms leav-

ing an expression identical to the first of equations (5.31). The limit of the

indetwinate form represented by the ratio of the two leading terms of the series,

however,, an be shown not to approach (5.31)

This suggests that the resistance of the conducting strip plays a vital part

in the determination of the input impedance, and that the approximation used in

obtaining (5.27), namely that the resistance of the conducting strip is zero,

must be made with care.

5.5 Attewted Solution of the Integral Fuatotn

One method for obtaining a solution for the input Impedance 4,r in

(5.21) in the general oase (where the conducting surface is not approximated by

wires) is to approximate the kernel in (5.20) and (5.21) by a degenerate mne,

where the sumuation now extends over a finite nuaber, N, of the modes instead of

to infinity. This is the natural method to use since only a finite number of

modes can be calculated in any case. When this is done the integral equations

reduce to a set of linear algebraic equations.

If the order of smmation and integration is reversed in (5.20) and the

resulting equation is multiplied by ooo nq and integrated from 1, to irn, oe

obtains

14-4 M4-1

OM + 7 Z~ 4 (5.36)

Using the same procedure, (5.21) reduces to
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zi f + Z Z.".. (3037)

where the quantities x, and T7., are defined by

Cos W 2, X0 dop I•

r,, f • cosmq" osq' dp2z

Inspection of (5.36) shows that a solution is given by Xn.= -1 so that
Zin. = FZZ.m - Z:Z, = -O.(5.38)

This result obviously is incorrect. The reason why an erroneous result is

obtained by the above approach will be made clear in the next section where the

problem will be formulated in terns of infinite matrices.

5.6 Matrix Fornulation

The problem may be summarized by the--five equations

M~ao

,(5,41)0. -,I or), K. (5.42)

K (0) -& o,0 1, -?1• e-q) (5.43)

where the orthonormal functions U,,(f')E I/6u4,•-,* are uaed for mathematical con-

- venience.

(5.41) can be written in matrix form as

V, zZe K

4 0 0 Z 49
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Or

j V = aZK.

To express (5.42) and (5.43) in matrix notation, use is made of the Mde-

potent matrix A whioh has the -following propertys A is an infinite ym. tr•c

4 matrix which, when it premultiplies the column matrix of the coefficients of the

Fourier expansion of a given function, produces a new set of coefficients which

correspond to a new function identical with the old in the region 10<9,, but

equal to zero if q'< I'pt OrF. In other words, multiplication by the matrix

annihilates the portion of the function which lies on the back of the slot,

The derivation of the elements of A is as follows$

Let

U 0, 4" Iql~qr.

Let the Fourier expansions of 'fA (f') and f:p) be

fA('P) & fAm(A4('P).,

Then

- .. 0) dUq U(d

n - I

or in matrix notation

fA = Af, (5.45)

where
tI,

I~ .fuI os^p osnddf-Ie}
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Integrating,

1 -4,
f E< W = cn ,/qd (5.46a)

Aon a f feL - cos n q, dq -- 5" 49 5 4 b

, Ci o f T :: L [ -em + ,(5o4d)
If the function j(q') is defined by

f 0l'l ) if4•) ,1-1(pl,

then it follows from

that

so that

f 5 = CZ-A)f a 6,
t where I is the identity matrix and D is an idempotent matrix that annihilates

1 that part of a given function that lies on the slot.

To write (5.43) in matrix form one also needs the Fourier expansion of

Then

I 6m "f &(qp) =a#" (q) Ur0)

Thus

I
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In matrix notation, then, (5-27), (5.28), and (5.29) become

V= aZ'K

BV=o (5.49)
AK ="d-S

where a and .4 are scalars, V and K are column matrices whose components are the

coefficients In the expansions (5.39) and (5.40), S is a column matrix with

components given in (5.48), Z'is the infinite diagonal matrix displayed in

(5.•4), the matrix A has components given by (5.46), and the matrix 0 equals the

identity matrix minus A.

Equations (5.49) complete the matrix formulation of the problem.

The unknown matrix V can be eliminated from (5.49) by substituting into

the second equation, giving

2o0 (5o50)

If in (5.50) we let K= K5 + ro/a we get

AKv=O. (5o51)

The matrices in (5.50) are infinite, so it is not strictly correct to speak

of their rank or of matrix inversion. Roughly speaking, however, it is evident

that the matrices A and 8 are in a sense singular matrices, for in (5.50) there

are twice as many equations as unknowns, at least if all of the matrices Involved

are truncated after M modes, say.

It is now interesting to write the integral equations (5.20) and (5.21) in

terms of infinite matrices; They becomeI
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0 - . Z', + Z'K, (5.52)
ZIM a• z'f + - r zKo (5-53)

Here

K , on = fum (fg)K(qg)dv' (5°54)
corresponds to the quantities Xmobtained in (5.36), where the notation used is

i slightly different. (5o51) can be written as

&zd[fK + : 0. (5.55)

This leads to the solution

Ks a (5,56)
which corresponds to the solution xm = -1I obtained earlier. When the infinite

matrix OZ'is truncated by using only Al modes, as is done when solving the in-

tegral equation using a degenerate kernel, the truncated matrix is non-singular

and (5.56) is the only solution to (5-55)o It happens, however, that the trun-

cated matrix is very nearly singular, i.e. its determinant approaches zero quite

rapidly as the number of modes used is increased. This has been verified niumer-

ica.lly using determinants of order 2, 3, and 4,

The nature of the difficulty encountered in the solution of (5.20) at-

Stempted in Seco 5 is now clear. In approximating the infinite matrix BZ'by a

finite one involving M modes, the singularity of the matrix has been destroyed

and all of the non-trivial solutions to the homogeneous set of equations (5°55)

have been lost. There is one more point that should be observeds the solution

(5.56) is not consistent with (5.54), since i is a matrix that corresponds to

Sa function that vanishes in the region q' < if IOr, while (5.54) requires that

1 the coefficients Ka,. correspond to a function that vanishes in the region

IqI< qo. The above discussion makes it clear that the solution we seek is a

6
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non-trivial solution to the homogeneous equations (5.55) that also satisfies

requirent (5.54). But this solution is precisely the solution to the pair of

1 equations (5.51).

The procedure that should be used to solve the problem is now clear. The

required solution satisfies (5-51). If (5.51), which contains infinite matrices,

is approximated using M modes, it reduces to a set of ZMequations in M unknowns.

It is not expected that these equations will be exactly consistent. They should

be approximately so, however, and a numerical solution should be possible. One

method that suggests itself for solving (5.51) both numerically and theoretically

is to use the method of least squares. The equations are first weighted by mul-

tiplying by suitable diagonal matrices W5 and WA:

'' ] (5,57)
[Ke~ll 18 F . 11'iw A

By premultiplying by the transpose of the magrix of the equations (5.57),

there results

Lz'8 aOz'+ AM 2A] -/( Z ,BW.28Z'f. (5.58)

(5.58) above are the least squares equations for (5.51). The matrix of the

I equations in (5.58) is easily shown to be non-singular, [see W. L. Ferrar,

loc. cit., Theorem 14], so that (5,58) may be solved using Cramer's rule. One

problem that must be investigated is the proper selection of the weighting

matrices WA and WS. That some kind of weighting is necessary is obvious on

physical grounds, since the first equation in (5.51) is a relationship between

I voltages, while the second has the dimensions of current. Also, the results ob-

tained in Sec. 5.403 suggest that it must be necessary to replace (5.50) by

something like

I
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-- ,4= Z-, (5-59)

where is the resistivity of the strip per square, and iOa, is

the total resistance of the strip, which must remain small as •r-• ,r

5.7

A formal solution for the impedance of a circumferential slot in a

sphere which is fed at one point and short circuited at a number of other sym-

metrically located points (as in Fig. 5-2) has been given [equation (5.27)]. A

simple formula (5.31) for one special case (Fig. 5-3) has been obtained. A method

of attack is suggested for the general case of the impedance of a slot in a sphere

(Fig. 5-1)o This has not been carried through as yet.

I

I
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6. THE EFFEMTS OF PLASMA RADIATION ON RECEIV NOISE

6.1 Inroduction

One of the problems included in the investigations conducted under the

subcontract is the analysis of the effects of a re-entry plasma upon receiving

antennas aboard a hypersonic vehicle, with particular emphasis upon noise gen-

erating processes occurring in the plasma. This problem will be dealt with in

this Section.

In the radiation of electromagnetic waves from a radio transmitter within

a re-entry vehicle, it has been shown in previous reports that the plasma sheath

produces two principal effects. These are (1) an attenuation of the transmitted

wave, and (2) a lowering of the input impedance. The second effect in most cases

would lead to an additional loss above that in (1) due to dissipation in the im-

pedance matching device that would be required between the transmitter and the

antenna, or to increased reflection losses if no attempt, were made to restore an

impedance match in the presence of the plasma sheath.

From the previous analyses, it is possible to calculate the field strength

produced at a receiving point (on the ground, say) by a known voltage impressed

across the antenna terminals in the vehicle. Since the input impedance of the

antenna has been determined, the received field strength also can be expressed

in terms of the power delivered to the transmitting antenna terminals. By the

reciprocity theorem, therefore, the voltage received across the antenna terminals

in the vehicle from a ground transmitter can be determined.

Although the reciprocity theorem allows the previous treatments of the trans-

mission problem to be extended to the reception problem, this applies only to

the (desired) signal. Reciprocity is strictly a two-terminal relationship, how-

ever, so that it does not consider the signal from any other source which may be
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active in the received signal band. In particular, noise generated by some

other source, including noise generated by the plasma, is not taken into account

in such a treatment.

In determining whether a radio circuit is capable of providing reliable

communication of intelligence, a criterion is adopted for a minim- signal-to-

noise ratio. The noise, in many cases, is that generated in the receiver by

thermal and other fluctuations in its circuits and components. The magnitude of

this internal noise is dependent on the temperature of the noise-generating com-

ponents, which usually is taken to be that of the surroundings. In the case of

a low-noise receiver, the limiting noise is that received from external sources

which radiate to the antenna. Thus a natural question arises when a high-temper-

ature plasma surrounds the antenna of the vehicle: Is the effective noise temper-

ature of the receiver equal to that of the plasma?

In this Section this question will be examined, It will be shown, in fact,

that the effective noise temperature of the receiving system depends not alone

on the temperature of the plasma, but also on the attenuation through the plasma

at the frequency in question. As a consequence, a lower optimum frequency usually

will exist for reception through such a plasma than for transmission.

6.2 Equivalent Noise Temperature

In dealing with the noise contributions from various sources, it is

convenient to use the concept of equivalent noise temperature. It then becomes

a relatively simple matter to determine the noise received by the antenna from

the plasma.

The situation is identical to that encountered in the field of radio astronomy

in the reception of emissions from radio noise sources. The derivation of the
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well-known relations will be given here, both for completeness and to bring out

the principles involved.

An antenna receives an amount of power from a radio source which depends on

the emission characteristics of the source, the attenuation in the space between

source and receiver, and the receiving characteristics of the antenna. The amount

of power received usually is expressed in terms of an equivalent source tempera-

ture T. This temperature is that of a black body which would produce the same

received power at the frequency of observation,f. oFrom Planck's law of radia-

tion, unit area of such a black body would radiate an amount of power per unit

frequency band per unit solid angle equal to

e (6.1)

where h is Planck's constant, and- is Boltzmanne's constant. This radiation is

randomly polarized. Since in most radio work hAl/k)< 1, the above equation re-

duces to the Rayleigh-Jeans approximation

E = 1 .A , (6.2)

Thus the emitted power densityE may be expressed in terms of the equivalent

temperature rby means of (6.1), or the simplified form (6.2) if applicable. E is

also called the brightness of the source.

The above concept of an equivalent brightness and equivalent temperature

also may be applied to a coherent or modulated type of signal.

In observations of discrete sources, the source will subtend a solid angle

12 at the receiver which is smaller than the solid angle /a of the antenna beam.

The received power then is given by

I &8-2A =` -~j AAJ2f (6.3)
where D is the receiver bandwidth, A -s•A*is the effective receiving area of

j the antenna, ( its gain, and -. = 4+r/o. The factor + arises from the fact that
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the antenna responds only to a fixed polarization, whereas the emitted radiation

is assumed to be randomly polarized.

If the signal received from the desired souroe is to be detectable, it must

be sufficiently large to produce an observable increase in the noise output of

the receiver when the antenna is pointed at the source. Receiver internal noise

frequently is expressed in terms of an equivalent noise temperature rN. The

noiae output of the receiver in the absence of any incoming radiation from space

then is the same as if a noise power

P,v A-= v (6.4)

were supplied to the input.

This noise power also is frequently expressed in terms of the receiver "noise

figure" F. This is the ratio of the actual receiver output when supplied with

an available power P, from a resistor (or other noise source), at a reference

equivalent temperature To, to the output if• were zero (i.e., if the receiver

generated no internal noise). Since noise powers are additive,

F= M t T. ++7

From this,

rm= (F- 1). (6.5)

The reference temperature To usually is taken to be 2900 K. F frequently is ex-

pressed in decibels.

It is evident from the above discussion that the addition of noise powers

is equivalent to the addition of the corresponding equivalent noise temperatures.

(6.4) may be used to define an equivalent temperature for the radiation re-

ceived by the antenna. Denoting this by 74, it follows from (6.3) that

"7a -- 7.'T'422. (6.6)

In the above discussion, it has been assumed implicitly that there is free-
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space transmission from source to receiving antenna. This means, among other

things, that no attenuating regions between source and receiver are supposed to

be present. The effect of attenuation will now be considered.

6.3 Effect of Attenuation on Receiver Noise Temperature

In considering the effect of radiation from the plasma on the noise

at the input of the receiver, it is convenient to think of the plasma as a trans-

ducer° A transducer composed wholly of reactance elements generates no noise,

since it possesses no mechanism for imparting random motions to the electrons

circulating in its elements. Noise generation in a transducer thus is synonymous

with dissipation. A transducer having a very large (-.oo) loss would impart noise

of temperature r, to the receiver, where 7, is the transducer (ambient) temperature.

Consider, for example, a transmission line which connects an antenna to a

receiver, Let the line loss factor be L, (i.e., =/P,', L)), and the noise temper-

ature of the receiver be r.. The transmission line, through its dissipation, re-

duces the temperature & of the signal passed to the receiver to L rg, and also con-

tributes noise of equivalent temperature (I-L) , where 7A is the line temperature,

Hence the total noise input to the receiver is

I~1 2 +-L) (6.7)

The signal-to-noise ratio thus is
(•/ 7%1L) /-T['+ 0 -L-) 71-J (6.8)

whereas in the absence of line loss it would be

The reduction in signal-to-noise ratio thus is

1L '= (P31/,4)1/O0/)" = L/f I- (I-/-) r/1/7,' Ie (6.9)

and thus is greater than the line loss factor itself.
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Some numerical examples at this point may be helpful in assessing the order

of magnitude of the above effect. Consider a line having an effective noise

temperature of 40000, and a receiver with a noise figure of 6 db (F=4 Then from

(6.5)

7 = 37-.= 8700 K.

Suppose the line attenuation at the operating frequency is 10 db, i.e. L 0o.1

Then from (6.7) the effective receiver temperature is

r*" = 870 + 0.9.4000 = 44700 K.

Consequently the signal-to-noise ratio (in the absence of external noise) which

existed in the absence of line attenuation is reduced by the factor L, which from

i (6.9) is
(. = O.1/[l + 0.9"4000/870] = 0.0194- -17.1 db

On the other hand, if the line attenuation is only 3 db, then

r." = 870 + 0.5°4000 = 28700 K

and

L"0.5/[1 + 0.5-4000/870] = 0o152-P'-8.2 db.

In a similar way, a plasma surrounding a receiving antenna contributes noise

j to the receiver input. This noise depends both on the equivalent temperature of

the plasma (r) and on its attenuation (L) at the frequency to which the antenna

is tuned. Consequently, in a determination of an optimun frequency for reception

through a re-entry plasma, the following factors are involveds

(a) the signal transfer characteristic, including

(b) the plasma attenuation;

(c) the equivalent temperature of external noise sources;

(d) the plasma temperature.

I
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6.4 Optimization Procedures

In optimizing the power radiated from a vehicle through a re-entry

plasma, only factors (a) and (b) above are involved. For the case of a strong

uniform plasma, for example, we have shown [2] that the optimum frequency is the

one for which the plasma thickness is 2* skin depths.

In the receiving case, the transfer characteristic for the signal and for

external noise is the same. Consequently the ratio of signal to external noise

is not affected by the plasma. But in the absence of external noise, the signal-

to-noise ratio is decreased when an attenuating plasma is present, as shown by

(6.8). Hence the decrease in signal-to-noise ratio due to an attenuating plasma

is not as great when external noise is present than when no external noise exists.

The level of external noise is a composite of contributions from terrestrial

and cosmic sources. Approximate values as a function of frequency for various

locations and times are available [8] for use in planning or design purposes. In

view of the great variability in external noise level, it is not possible to make

an exact specification of optimum frequency for all situations. However, a typi-

L eal procedure that can be followed will be illustrated below.

To illustrate the optimization procedure, consider the case of a strong uni-

form plasma of constant thickness. For this situation, the analysis of [2] may

be used to determine the radiated fields, etc. The various factors listed at the

end of Seo. 6.3 will be considered in turn.

(a) Signal transfer characteristic

For the case of a strong plasma sheath, the radiation character-

istics (including sheath attenuation) are such that the high-frequency range is

of interest. A slotted sphere antenna then has a radiation pattern equivalent

to that of a loop whose plane is perpendicular to the center of the slot. The
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far field then is given by [2, p. 22, eq. (27a)]

-- , C V, r sa ' , eink'(c.be (6.1o)

where

For the usual case of a slot length small relative to the wavelength, the voltage

distribution along the slot is approximately triangular, so that

v =-•v ( o) .

The last factor in (6,10) represents the sheath attenuation. Denoting this

attenuation by Li

e-2. 1 6 ýkdchbj (6.11)

we have

wo A (6.12)

(6.12) gives the free-space field. The actual field at the receiver (which we

assume ground-based) will be modified by propagation conditions. In order to sim-

plify the treatment here, we will assume free-space conditions to exist in the en-

suing discussion.

Let the receiving antenna have an effective gain (i.e., including line losses)

of *., so that its effective aperture is

A (6.13)

Furthermore, assume the antenna is matched to a 50-ohm line, so that the load

impedance is 50 ohms. Then the power delivered to the load is

"I2= I4Oi 4. / 03o

and consequently the load voltage is

VZ - ;• V(o) (kGTL•

K= (S"a r

where the magnitude of K is independent of frequency. Hence
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V, IK (64 (6.14)

(6.14) gives the voltage ratio between the slot and the input to the ground-

based receiver.

The epupling between the antennas in transmission from the slot anterna to

the ground-based antenna can be represented as a mutual impedance, so that we can

draw the equivalent circuit shown in Fig. 6-1 (a). The mesh equations are

V(O) - "Iz"Z. + X"Z,, 4 r-"z",

12(g) = w -0-, WO) ZILI'I

1ýI Zg+ Ir 2 , Zee -S -

For Z,= Z== 50 ohms,

. ~ ~~~Va. -- z".,- w z ',,

so that

LZ', - V-z g/V(O), (6.15)

For the reverse case of transmission from the ground-based antenna to a re-

ceiver connected to the slot antenna, we can draw the equivalent circuit shown

in Fig. 6-1 (b). In an analogous way we obtain

A 4CI)= Zia -ýa() =-V Za (6.16)Z, 4 ZI, Zaa Z,, *Z•"

By the reciprocity theore, Z,= Z e so that from (6.15) and (6.16)

= VT T, Zo, Va z,.-- Z__j +Z..g
Assuming that the receiver input is timed optimally (by an automatic tuning device,

for example) so that

the above equation reduces to

vo oRIyI' = V(o) = ,V (6.17)

where v = •(Y) is the input conductance of the slot. In the above we have taken
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Vr may be expressed in terms of the transmitted power Pr, since

PT r2''. (6.18)

Since the signal power Ps'at the receiver input is Y,* we have
,/P-r-C-r Ka. L= 1 , II+,,4 ) . ) OL, (6.19)

where V may be called the signal transfer characteristic. 4' is equivalent to a

sigual temperature 7',

•'= •7•.(6.20)

In the absence of the sheath, the signal power would be

-(•-6.21)

where /

The frequency-dependent terms in 0 of (6.19) are 6.,S and •. For a ground-

based antenna of constant effective aperture, t while 2-'4. £ Nay be found

from calculated values of Y. Consequently we may calculate the signal transfer

characteristic O and plot a curve of it as a function of frequency.

(b) Plasma attenuation

The plasma attenuation is given by
L=e_-.*'k(C- b) I

But for a highly conducting plasma
A.. = •.,u•j ), (AW e.e 4 IV••,)'/2 £tw)ji/ ' .•/. _, = -A:-)e ,

where w is the radian plasma frequency, V the collision frequency, and v-the veloc-

ity of light. Hence L =e- J''• =e- (• • _b-) (6,22)

,. thus decreases exponentially as the square-root of frequency. From known (or

estimated) values of wv and V# L may be calculated and plotted against frequency.
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(a) Eguivalent eMMture of external noise

External noise is a combination of terrestrial (natural + man-made)

wind comic noise. The noise level is a complicated function of location, time

(of day and season), as well as of frequency. For planning purposes, curves pub-

lished by the COIR [8] may be used. These curves actually give the equivalent

noise temperature, F4 , expressed in db relative to 7O = 2880 as a reference. Hence

a curve of external noise temperature vs. frequency may be selected for the loca-

tion and time of interest. This noise temperature, however, applies for a re-

ceiving antenna which is a short (relative to the wavelength) grounded vertical

rod. Since such an antenna has a gain of 3/2 relative to an isotropic antenna,

the CCIR noise temperatures should be multiplied by 2/3 (i.e., decreased by

roughly 2 db).

In making use of the OCIR curves, it is necessary to assume that the external

noise is uniformly distributed over all directions. This actually is not truep

sincep for example, natural terrestrial noise is due to thunderstorms, which are

not uniformly distributed; nor are propagation characteristics, which are super-

imposed on the source distribution, independent of direction. In accordance with

the above assumption of a uniform distribution of external noise, the solid angle

A of the source is 4/X. Hence from (6.5) and (6.6) the external noise temperature

at the antenna is

'C' ' (6.23)

where the gain of the antenna has been taken to be 3/2.

Since external noise experiences the same reduction in passing through the

plasma sheath as does the signal, the temperature of external noise at the receiver

may be obtained by multiplying (6.23) by the ratio Ps/P-'obtained from (6.19) and

(6.21)s
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- rE rP K1 " j; 43Z(Fj - ) (6.24)

"Values of rM may be calculated from (6.24) and plotted as a function of

frequency.

(d) auivalent pla1 temoerature

The equivalent plasma temperature already has been discussed in

Sec 6.3. If we denote the plasma temperature by 7, then from (6.7) the total

noise temperature of the receiver (excluding external noise) is

Srm' = 7s +- (I -L.) 7p. (6.25)

Since L. (and possibly r ) is a function of frequency, values of rA may be plotted

vs. frequency from (6.22) and data on ro

From the plotted curves of the various factors discussed in (a) - (d) above,

it is a simple matter to combine these to obtain a curve of the overall signal-

to-noise ratio at the receiver. This is given by

r; 7W', A# [r;+ 7,v + - .)r,] 0t
where &' is given by (6.19), T,' by (6.24), andL by (6.22). From such a curve,

the optimum frequency can be determined.

In general, because of the large effect of plasma attenuation both in re-

ducing the signal level and in raising the internal noise level, it is to be ex-

pected that the optimum frequency for reception will be lower than the optimum

frequency for transmission. The extent to which one can gain in reception by

lowering the frequency is determined largely by the external noise levelo The

latter is a strong function of geographical location and temporal factors, so

that the optimum frequency for reception will vary accordinglyo
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7.0 COMCLUIONS AND MC IDATIONS

7.1.1 Caleulations of Input Adittance

A study of calculations of Input admittance of a spherical &lot

antenna made by MSYD on the IBM 704 revealed two significant phenomena and two

rlimitations:

(a) A linear relation exists between the change In input ad-

mittance from the free-spaoe value and the change in refractive index, as ex-

pressed In the relation

for smal (l ¶-),

(b) An apparent interference phanomnon takes place for mall

collision frequencies around a certain value of plama frequency.

(c) The calculations are erroneous for certain values and

ranges of the paraneters.

(d) The series formulation used In not practical for values

of vehicle cirounferance greater than about one wavelength.

7.1.2 Th9oretiol Extensions

The following results were obtained in extension of previous

developmentst

(a) The relation for AY given above in Sec. 7.1.1 (a) is

shown to exist for any vehicle size. This suggests a useful technique for pro-

flight oalibration of the antenna so that In-flight easaurments maW be ued to

determine plama properties.
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(b) The phenomenon mentioned In See. 7.1.1.(b) is explained

as the interference produced by reflections from the outer boundary of Ube

plasma sheath, whereby the antenna is effectively terminated by an almost pure

reactance.

(a) An analysis of the input admittance which is suitable for

large vehicle sizes is outlined.

7.1.3 Pau Ma

A general formulation Is given of the problem of an inhgeneous

spherical plasma. It is shown that the previous forms of the result are still

retained, the only change being that the radial functions require alteration.

In this connection, a significant new feature is that the electric and magnetic

modes satisfy different differential equations.

7.1-4 Slot Voltage Distribution

The determination of the voltage distribution along the slot in

the general case leads to an integral equation. A practical solution to this

problem was not found, but a method of attack which may prove fruitful is pro-

sented.

7.1.5 Plasma Noise

In a discussion of the effect of noise generated in the plaman

upon the reception problem, it is shown that the effective noise temperature

of a receiving system aboard a re-entry vehicle depends on the attenuation of

the plasma as well as on the plasma temperature. Consequently, the optima

Sfrequency for reception usually will be significantly lower than for transmission.
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7.2 Regameudatioe

1. In view of the inaccuracies of the double precision program used

In the calculations, it is recmmended that a triple precision program be em-

ployed In any future calculations.

2. The practical importance of a calibration technique based on the

kelation AY 1K(1On-I) makes it desirable to extend the validity of this ex-

pression to geometries other than spherical.

3. In Soc. 3.3, a procedure was outlined whereby practically useful

formulas can be obtained for large spheres. The details of this procedure

should be worked out so that formulas suitable for nuerical computation will

be available.

4. In Sec. 4, formulations were derived for Inhomogeneous plasma.

It is recommended that these formulations be applied to available information on

plasma properties, so that the quantitative effects of plasma inhcosgenelties on

antenna radiation properties can be deduced.

5. The effect of the plasma on the voltage or currant distribution

along an antenna is still an unsolved problem. In view of its importance in

upper atmospheric research, further work on this problem is justified.

6. The effect of noise generated by the plasma on reception aboard a

re-entry vehicle has been shown in Sec. 6 to lead to lower optimam working fre-

quencies in reception than in transmission. It is recommended that experiments

aimed at verifying this conclusion be considered.

I,
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